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THE ISAACS PROBLEM OF MOVING AROUND AN ISLAND

G.K. POZHARITSKII

Two cutters, players, sail on the “sea", a fixed plane. A circular island of unit
radius has its center at the origin of a fixed coordinate system. Outside the island
the velocities of cutters are arbitrary as to direction and limited in modulo. At
the "island" boundary (in coastal waters) cutter velocities are directed either out
to "sea" or along a tangent ot the /island/ boundary. If the cutter is on the island
its velocity is zero. The first player (fast cutter) minimizes the payoff, while
the second player (slow cutter) maximizes it. In the first game the payoff is the
distance between cutters at a fixed instant of time, In the second game the payoff
is the time of convergence to a given distance. The difficulty of solving these
problems which invelve moving around an island was noted by Isaacs /1/. Bothproblems
are solved in this paper.

1. The two-dimensional vectors z; = (% 1% %), v; = (i, &) with { = 1,2 are defined in the
stationary system of coordinates X,° X, in the plane P. The number t and vectors z,, v; con-
stitute vectors x, = (z;, Vi» 1). The two-dimensional controls u;= (u;° ;") with i = 1, 2 repres~

ent the velocities of players, and vectors z; enable the construction of vectors z = (7, 7))
v = {u#;, u)and the equations of motion which are of the form

2 =, vy =0, 0"+ 1 =0,i=1,2
The control u e {(z) = §, {(z) X §3{z), where the sets &; are of the form

i (2) = {uzl fug 1}

when z; | — 1> 0 (in “open sea"),
Ce oy = {us ] Vs | Couiy 2ts > 0}
when |z; | — 1 =0 (in “"coastal waters"),
Ci(1)={uillui|=0}
when |z; | —1<C0 (on the "island™).

Vector =z ¢= X, where the set X is defined by the relations
X={[(al—1>0i=1421>mu>0 L=1>0 4, =¢t>0)
We denote
n=zg—2,r=|nln@=r~I
Xe=L1t20NX X ={in@ >0, 2=(, ) X XX
Let us consider function ug (z) = (uy, 1. Uz, 5) and sets §° () C X; defined by the relations
u; (2) L (2), ug (2) = lim ug (zy, 2,) as x> 2, 7, = X
L) ofellz~nl—e) X =0 (3)
We combine functions u, ; {3} in the set ¢ ; and examine the sets

veo= {uy (2 & (@b oy o= o nh e = oy, g (2)) S ()}

' The motion z, () (£,(0)= 1,. t, = 0) of set w, ; is absolutely continuous, and the sequence
typf = 1,2,... defined for z; = z,(t,) by the equality
Ga=inf{|{t >t 2, VT EENVE>;+ 1)
is such that {;-» 00 as [-» co.

Function !; (z;, x) = I (v, ug (2)) conforms to the equation x, () = 1; (x;. ¥, (t)) for almost all
t &= [t;, tjul. Motions =z, (t) and sets
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ay (0, ) = ({Jx, (¢) for ug ;s vy j as sk )0, , == {, (1), 0, ,}

exist for all w ;.
We specify two functions

By (0, ;) =1 (x, (1)), hy = inf 0, (v, )
B, ) ={t]t>0, r,(VE{z|nx) >0}, 0,=¢
hy, = oo
and calculate the series of functions
hi, j (1) = (— 1) *tsup ((— 1) by (v,1) for x,(t) (C 0 (0y,.)
i, (2y) = (— D)1 inf ((— 1)1 R, 5(vy,;) for v,e=Vi5,e>0)
Vo s ={w, | lim (h;; (vs,)) — 7.,,(21)) =0 as -0} Dy, ;;(2)
Function r; ;{(x;) is the value of the game of the i-th player in a game of number j, and
Vo,i,; (2)is the best strategy.
2. We introduce vectors p; ={(p,, i» Pv,i» P;) whose structure is that of vector Iiy. Sets

@i =i [ 1P 1] >01 0 =1 X 90y = ¢ X X

contain vectors py, p = (P1, Pg), ¥ = (p, z). Vector p° = (—z, p).
We introduce the following notations: W,, Wy, for sets, and W, , for a vector (scalar).
We shall use the letters W, v, w, £, 0, §, a, v, 8, 0,0, ¢ for denoting sets. We denote

a, i (y) = Z;, 0y (y) = I, Oy (I) = O (!/) =T
ap,2,i (¥) == Pr,1s Gp,u,i(y) =2,
The set Wy = {Wy 1, Wa o} consists of vector (scalar) W, and of set W, ,. Let W, ,(y) <
{. Then ) )
a; (Wao)={u;[u C Wal=2a;i Wa, v, u))

a} Wa o) ={u;}a; Wa o y,u)) %= '}
We construct the operators

EWa) =W, a=W, a1a’Was . ) >x @Wia1,...)}
for Wa,, (v, u) & R
The space R¥ is of dimension 4. We construct operator Wi o which is the operator of
minimum for i = 1 (maximum for i = 2) using formulas

Wig1==(— D inf {(— D" Wo , (4, u) foru; © ait (Wa, e ¥, u5)}
aiWiaoy ) ={u; | Wia1—Wa,(thu) =0, u&SWq,u)}
o/ Whan ) =a’ (Wa o, y)

The construction is similar when W,  =c (2, p), Wa T ¢ If Wy, =c (Y, t), Wy < {t} then
fi.t (Wg) = ;° (W,). The minimax operators for i = 1 and maxmin operators when i = 2 are of the form
fi (Wo) = 2 (/£ (Wg)). Note that c¢(y) & R, h = pl(z, u).

Let us calculate

fulc () = bm (7 (c (y + (R (v, w)/y)t) — c (V)
as t—>0.
We set ¢; (¥) C RY, Yo (y, 1) TV, v« C ¥V and calculate for the set Vg = {¢: W)s Yo (¥, 1), yo} the
boundary operator
W, (Vo) = {ta (ta) Ta (Ua)v Ya (Va), B¢ (Va)}
B ={t{|t >0, yaly,) E va}, ta{ve)=inid(va)
Yo= Ya (Y la (L)) Ta= ¢t (Yo Wa)), B, ={t I te= [0, te (va)])
Pa (2, va) = {P Yy E Vo)
We construct the sets
fire o) =i (Ta (¥)s Pa (@, Vo))
Li,8(c (), Va) == fi,1 (¢ (Ya (¥, 1)), Ba (va))
i (c ()s Va) = supLe,p.2 ()
fi o= "To,a (Ci,8.1 (Ta (¥); Va), Ba (Vo))

ey (Va) =J2,0,1 (Va)
Functions

vio = {0, ¥ (¥, 1), Vi e}, OUs (y, 1)/OL = L (g, (1 1))
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and sets

L, = {ORIBY° | u C fo1 (B )} Vivo = Vi U Via U i s

correspond to sets aC X, ¥ ={ylzcse} Ny
We shall use the notation
Y=y {Eilzal—1>0h vio=7/] {x]iz]—1=0
(—1)'p,, #: > 0}
i, =y {=lt>0
and determine the operators
ti 6 (2) = ts (U1, 0)s to () =min (t ¢ @), ts,0 (%))
a = {x | tg (@) > 1} a1 (@) = {2 |t (@) = tg (2) <7}
P (c z)) = max (0, ¢ )
Zy g (@ ) =a, (B (¥, 1)} for y & Vol Yoo

As the first step we determine ¢; = 7 — (jiy — Ho)T

a4 (z) =a 5 () =L @) 1 (@) =1—% (@)
Wi g = {ty, ¢ (@) ¥ (1 8 Yo (1)}, o, ¢ (%) = ¢ (W) )
vy g = {—@° + =, ¥ (¥, 1), {ay X fr,5,1 (W1, g1}
Note that by construction function ahg(x).-:cez'g{x) for x(C4;. We specify the sets

e = {2 | ¢° (z) C {0, n}, 2 C @y, T3> 0}
Zop={ax(¥s (1 NP CFren(Wop)
Vo="{0, 2o, (z. D ag}, bpo==ia{tg), @ ==arccos(mz/|n| - [} + in
Let us define function 3¢ (z, t) for rEady ¢ <l A (22 21) = ¢° (@), 4y, ¢ (2).
The angle ¢° is read counterclockwise from vector z; to vector gz,
We specify the set
§;,(.z) == {CAiCAC R? R IC !- f = 0, K(Cx, ZX)C [0, ﬂ]}

and write the sequence of functions

o, (@) =0 i (2, D)=V 25 — 1 — 1

oy B2 =z — 11— w1, @Enz)=arctglz®+ 1

g{z) = 9" (1) + @ (&) — @ (), %50 (i T) = ¢ {7} — 2 {7)
which enable us to define the sets ;=8 [E.r and 8, ;=ay; (1810 When

Sri={z]oni(2) 2 0h 8,i={z]ay:(2) <O, ay:(z)>> 0}
83,1 ={z|0n.: () < O}
we have
Ci(@) =8 {er]eri(en 2) =0}, C;(x)=="Exr [ {er|u,;(cn, 2) =0}
and for ze=d; 4. i, i, k=14,2

Cilo)=5 N {alr (6. 5)=¢;(x)} for ze 8, ¢ {J 8y 55
i=1,2
Ci@) =8B N{alr 2)=¢@+tay ;@) for zedy;,
P55 ]
ag g = (¢4, ¢ (7))
The imbeddings ¢; (2) € C; (2) & RB* completely determine function g, ¢ (T).
The set R' is the join of one-element sets, and function ¢y,¢ 1s determined by the rela-
tions
Cop o= |2 — e (@) | — v for e 8; 1) 8y 0 f0) =12
cp=ls—a @+ 12 —@E |+ q@ — (i — )
for x =831 | 85,2

Let us define vector p, , (C 9, (z) for =z e ag:

Po{z) == {p] Gp,=,;{P) = (2 — ¢; (2]} (— DI~}
g’ =t \fx | =0,n}
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which we extend together with vector y, , T X X @, (z) = y, , 't continuity to the -

0,9 = {z}°=n,mg (2} <0}, mp="Cyp.1(w— 9%, v1,p)

Let us now construct the equivocal surface Gq,. For this we calculate

Pe (z, u) = fy (20,5 (1), Bs (@) =[5 (By(a, w), T (2))

We denote

hy = (1 —cos g (x)) py — (1 — cos qp (%)) ne
and write down the sets

& p = {IJIEal,wv B: (r) << 0} = Es o = {zle=m,

Ba (2) = (x) < 0)

L=8eN{zlm@ =0} X=X X, (@) for 25§
We construct the sequence of sets

A’Z = pu.,zv hZ = h (yw u) + 7"2B§ (Iv u)v Wh = fl (h21 c)
B ={nlar () =251, ay () = ao (), Wi (4 < {ul Bg (, w) = 0})
The equality a, (y1) = 4o (¥} which follows equality a, 2(¥;) = Ag: 1, means that, generally hor #=

Ay and the remaining components of vectors y,, y are the same. Let 83 (¥) = yp (y) — R*. The
motion y, (y, t) corresponds to relations

Yo (4, 0) = yg (y) for ¥ C v Y,/0t = I, (y,)
Lo = {0h (y, WY | ueE Wi, (W) ¥y, )= X X g ()
when > 0

These conditions separate the unique motion

Tp (2, 1) = a, (Yp (4, 1) fory & vy
The sets

Bp=1z]lz | —1>0), W, = {0, 7, (z. — 1), &y}
define function ¢, (z) =i, (W,,,) and the set

bio={zo(a, ) 11 C [4, (2), 0), & B} = &y
To define the set a, we set vector

z, (z) = {z |a,,i(x) = —2; for i = 1, 2, ao(2) = ap (z)}
and the set

8, (z) = {xxl ba, i (@) | = |2; |, aq (7)) C (¢°, n)}
The set

8y = 81,0 .0 lzes 51,¢} = By (6;, @) = a,
is obtained using the operations of reflection and join, taking into account the relations
O3 = a, =0 ([J 8;(x) as v = 8, q)

Zy,, (@1, ) =25 (x, By — 1), 11 = 7 (z, &)
Wom= (@0 (2), Ze,e (5,0, ol o, (2) =g (W)
The construction of set a, enables us to determine Wy in the form
Wop=={as,s(¥), yo (¥, 1), 7" (@)}, a1,z (2) =ce(Wap)
The structure of function aj{z) for z < o; implies the validity of eqgualities
a5 (%) =0 (@) for ZEu)q, a5 (%) =T1e{%)
The new notation ry g () will be subsequently required. Let us set forth the second
method of constructing function ry (z).

Let us determine y, = 1,0 [ {¥ 12 & &1, ¢}, vy = {ag ¢ (@) W vy} and function ¢, (x) = ¢; {ty) when
Y= ¥y, (Y, 1). For s & &) ¢ we set ¢, (z) = 4 ¢ (*). The sets
w=v{z =0y @0 =) Wy =@ 6y 0w
enable us to construct f,, (y) = b (¢, (y), Wy) and determine
Y, = Yy U G0 () e (4, ) = G (4 G fox L
Ve (0o 1) = Yo (W a — ta () + 1) for £ > 115 (y)

{c, o (W)
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Thus motions y, (y, t), . (¥, t) = a; (¥ (¥, 1)) and set W, = {a, ; (z), ¥, (y, 1), vy} have been deter-
mined. The equality ¢ (W) =a, ¢ (z) confirms the validity of the second method.

For practical construction we use variables zg = (p;, Pq, 9°, T), Pi = | z; |. Let zy& E,. We in-
troduce the substitution ¢° = @, (P1r Py Tr Tg)s Us = Uy 3 {(P1, Pov T, T3 Y1) in conformity with the
equations 1y o (x) — Ty ¢ (Tg) = fu (M, ¢ {z)) = 0.

Let

Ty = (P1s P2» 1), P° = (pp, 1> Pp. 2 Pe)s Zp = Pp, l/Pp,z

Y, = (25, 25, 73) for &y’ =0
For vector y, we can obtain the equation y,” =/ (y,) which can be easily solved numerically.
Let us pass to the second problem for

T Xy =X () {z]| Hs (@) = Wi cos @° — py, sin @ = U2 <1}

which admits function t (z) = r, , (z) in conformity with the equations

@) =sup {v|r, ¢@ — 10
(lim & (z)) for x>z, (21, ) S X, X X,) —tfp () =0

We denote by p, (r, @) the distance from point z to set ;. Then in conformity with the
second equality we have

o ={z LD T8}, L) =12
L (@) = {z | g (@) =t (@), aq (1) = a, (@)}
ps (@) = {z]| 0. (2, o) 10, el}
We find
B (@, u) = fu (0o (2, o)) for T & pg (o)
By (@, u) = 0 for z & p, (wy)
gk = C ﬂ {u ‘ ﬁk (I! LL) = O)' U, i = fi (fu (rk,(p)v gk)
wy, i == f; (fu (Tk,q), 0) )
ey = (T | Uk, 5,1 (— D >0} B, i= (x| wiyo,1 (— 1)*2 >0}
xpi={J for LA=12, EB,=w, & =
These relations show the validity of equalities
ry,j (&) =r; ¢ (@) for x C X;
Let function u,, satisfy the relation
w k() S {ui ] & %p, i,
For the sets we assume that
&k (@) ={z|2Epe (@)} Dz, T pe(y)} =t
zy = {7 18, (7)) = 2¢, a4 {z)) = q, (=)}
la @) ={llz -2 |—e<<O, 71,1 () TP (@)} D
, T, & e (o)) =&,
Functions
uik(r)=u, (2) for zEE,,
uix(r) =ug,.(2) for z&=t,,
provide the strategies
Uh, = {2g,i (2); B (21}
The described properties enable us to prove that
vk, () C Vi
We introduce the notation
ay = (A, [J @, 9) \ (&3 [J @), &g = T ag, 0 =0
vi={ag @), %W 1), Y1950, n} N a;} withj=1, 2, 4
T @ t) = {a: W (U, ) | P E [, 00 (v))}
T ={Zje (@ () 1P C oo ()} =2, (z, t;, €)
When j =3, we have I3, (z,t) =z, (z. t).
Let us define the absolutely continuous motion r, (z, t) for all z,! = z, (r, t) that satisfy
the equations z, (z, t; + ) =2z; . (', 1) for z' C a;, t = (0, ti e (z:Y).
The motion z,(z, f) is unique when ¢°z0.n. When ¢° =0, n we define it by the condition

z, (z, t) T @y for t:0
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Points by = 2, . (£, 0), @; = 2, . (25, 0), 2, (z;, ¢) = @, ; (z,) are shown in Figs.l and .. In Fig.~
zy & ay,1 with j = 1,2,3. Points ¢; 5 = ¢ (z) for z = 8;, lie on the circle. The first player moves
along the straight line (aj, ¢1,;) toward point ¢,; at velocity p, and the second, along the
straight line (c, ;, b,) from
point ¢, ; at velocity u,.
In Fig.2 vector J~ & agl] oy,
Z shown by dash lines (p,, A:)
and the symmetric to them
lines (r;, ;) represent motions
on set §8,. The second play-
er moves from @, and A,, and
the first from p, and A,.
The motion of points b, a;
is rectilinear for X e Oy,
z & b, .

We denote

Wy g = {Ov T, (I’ t)’ 6@}’

Lo ((‘Js, u) = I3 1 to (("3,0) = t:),l
Motions z,(zx,t) are "rect-
ilinear"™ up to the points
z4 1 (r) of tangency with the set
8, at t, . (2) and, then move
along the dash lines to points
Mi=ga, ; (x5 (r4,1)) (see Fig.2).
When ¢>13 .. the motion is
z, (z, t) C ;. This inclusion
is made for definiteness:
motion z, (z, t) CC 8 () exists
at z arbitrarily close to O
Note that in the case of
points by, b, the trajectories
) reach directly the set E&g
Fgi.2 avoid tangency at { =i, . (Z)
and 1z, (z) C & when z (T a,.
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